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1.0 INTRODUCTION AND PROBLEM STATEMENT

Analytical techniques are needed by the Air Force for

predicting stress intensity factors of cracked metallic

structures subjected to rapid thermal pulses. A schematic

of such a problem application is illustrated in Figure 1-1.

General purpose numerical techniques such as finite element

methods are currently available for the solution of such

problems. However, they require time-consuming finite

element modeling of the structural configuration, including

the crack, and detailed thermal/stress analysis must be

performed for each thermal transient to be addressed.

The modeling is further complicated by the extremely steep

stress gradients which exist in the vicinity of the crack

tip. The stress singularities at the crack tip dictate the

use of an extremely fine finite element mesh in this region,

or a special element which has the appropriate crack tip

singularity built into the element interpolation functions.

Furthermore, multiple finite element models and analyses are

required for a single structure if we desire the stress

intensity factors as a function of crack size, which is

usually the case.

Thus, the objective of this study is to provide a convenient

and accurate way to calculate the stress intensity factors

caused by rapid thermal pulses, for use in conjunction with

existing fracture mechanics software used by the Air Force

to predict crack growth and fracture in flaw tolerant design

applications.

As a result of the Phase I effort reported here, a

preliminary version of an IBM-PC based computer program,

AF-CRACK, has been developed based on the concepts of

1
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Green's function and influence function. AF-CRACK

calculates stresses and stress intensity factors by

integrating the closed-form Green's function solutions to

the general thermoelasticity problem of a point heat source

in a flat plate containing a crack. For a given plate/crack

geometry, the stress distribution and stress intensity

factors due to any number of randomly located heat sources

(or sinks) can be calculated by AF-CRACK in a few minutes.

Preliminary verification of the program shows that results

generated by AF-CRACK are very close to those obtained by

finite element methods.

AF-CRACK combines and links several independent program

modules using a unique "software bus" concept, and is a menu

driven, user-friendly software package with extensive

graphics capabilities. Both input and graphics in AF-CRACK

use the popular spread-sheet program, LOTUS-123 [1], linked

directly into the AF-CRACK program through the software bus.

In this manner, data input, manipulation and review are

greatly facilitated using LOTUS-123's extensive data

management and graphics capabilities.

The stress intensity factor results generated by AF-CRACK

are useful as input to any of a number of fatigue crack

growth and fracture prediction programs used by the Air

Force. An example of such a program, Structural Integrity

Associates' pc-CRACK computer program has been included on

the AF-CRACK software bus. Although a direct data link

between the two programs could not be developed under the

cost and schedule limitations of the current Phase I effort,

stress intensity results generated with AF-CRACK can be

directly input to pc-CRACK using the KI input option in the

pc-CRACK LEFM module. If a Phase II effort is funded, a

direct link can be developed between AF-CRACK and any

companion fracture mechanics software selected by the Air

Force.

2
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Qi = Fi(t) - Point Heat Sources at Various Locations in

Structure

Figure 1-1. Schematic of Cracked Plate Subjected to

Rapid Thermal Pulses

3



2.0 THEORETICAL SOLUTION

2.1 Assumptions

The following assumptions have to be made to simplify the

problem:

(a) The problem is assumed to be plane stress. In other

words, the thickness D in Figure 1-1 is assumed to be small

enough so that the temperature distribution in the thickness

direction can be treated as uniform.

(b) The metallic materials are assumed to be isotropic,

homogeneous, and linear elastic.

(c) The rate of heat application is slow enough that the

coupling terms and inertia terms in the general

thermoelasticity equations can be neglected, i.e. it is

assumed that quasi-static thermoelasticity applies. It is

anticipated, however, that Green's functions could be found

which would permit the incorporation of inertia terms into

advanced versions of the software, if it is necessary for

envisioned applications.

(d) The crack surfaces are assumed to be stress free and

heat conductant. Although the solution techniques developed

in this report can also be extended to cracks with insulated

surfaces, for purposes of this Phase I feasibility study,

the crack surfaces were assumed to be fully heat conductant.

In reality, actual crack surfaces are expected to be

somewhere between 100 percent heat conductant and insulated.

(e) We assume that the heat convection coefficients remain

constant. Again, this assumption was included for purposes

4*" " ' ' ' ' 'r, " ' ' ' ' '' ' ' ' ' ' " " + ¢ " +" " "''- " " 4'
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of the Phase I study. Variable heat convection coefficients

could be incorporated in the program through a more

complicated but similar derivation.

2.2 Governing Stress Solutions

For a plane stress thermoelasticity problem as illustrated

in Figure 1-1, the governing equations are

fv2T = T,t + E(I)

a .0 (2)

a.. = 2G [ij + (-') 6 i - 1+)6 iT] (3)
1j(l-V ijekk 1-v ij

6 ij = (U ij+Uj,i)/2 (4)

and

v2U l+. .1+1)
v U. + (- )U.. = 2( - )aT (5)

where T=T(xlx 2,t) is temperature distribution, t and xi are

time and Cartesian coordinates respectively, f=(K/pc) , K is

heat conduction coefficients, p is mass density, c is heat

2
capacity, n2= (2H)/K/D, H is heat convection from the plate

surfaces to the environment (see Figure 1-1), D is the plate
thickness, Ui are displacements, a is coefficient of thermal

expansion, and G and v are shear modulus and Poisson's ratio

respectively.
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Nominal stress distributions generated with these equations

are used to develop stress intensity factors via the

influence function approach described below.

2.3 Stress Intensity Factor Influence Functions

For any plate/crack geometry, [2] cracktip stress intensity

factors can be determined by integrating the product of the

stresses at the crack location in the uncracked structure

and an influence function (or weight function). That is,

for a crack as shown in Figure 2-1, the stress intensity

factor can be calculated by

KI = a (X)m (x)dx (6)0 yy  1

a

KII = axy(X)m 2 (x)dx (7)

where m1 (x) and m2 (x) are influence functions and aij are

the normal and shear stress distributions on the cracked

surface in an indentical but uncracked plate which is under

the same temperature distribution as the cracked plate.

Appendix A includes influence functions for a single edge

cracked plate and a center cracked plate, presented by

Bueckner [2] and Tada [3] respectively. Many such influence

functions for other crack models of interest are available

in the literature, and can be added as the need arises.

2.4 Principle of Superposition

In general, as shown in Figure 2-2, there may be multiple

heat sources (or sinks) within the plate which will cause

6



thermal stresses and stress intensity factors at cracks in

the structure. Since the problem is linear, it is easily

demonstrated that total stress intensity factor can be

calculated as the sum of the stress intensity factors caused

by each individual heat source, acting independently. That

is

K(t) = [ [K(t)]i (8)
i

where K(t) is the total stress intensity factor and [K(t)] i

is the stress intensity factor due to the ith heat source.

2.5 Green's Function for Time Integration

In equation (8), the stress intensity factor [K(t)] i caused

by each individual heat source can be solved with the

concept of Green's function integration. As illustrated in

Figure 2-3, the stress intensity factor due to a heat source

Q(t) can be calculated by

t
[K(t) = Qi() G(t-r) dT (9)

where G(t) is the stress intensity factors due to a Delta

function 6(t) heat source at the i th heat source location.

As shown in Figure 2-3, generally, the Green's function G(t)

will decay and approach to zero after a decay period td.

Therefore, the integration range in equation (9) can be

reduced to from (t-td) to t. Such a reduction in the

integration range greatly increases the speed of the

7



calculation because, instead of integrating for the entire

time history, it is only nessary to integrate backwards from

the present time t to (t-td) as follows

[K(t)]i =ttd Qi(T) G(t-T) d (9a)

2.6 Single Edge Cracked Plate and Center Cracked Plate

For Phase I, only two crack models, single edge cracked

plates (Figure 2-4) and center cracked plates (Figure 2-5)

are considered. We also assumed that, similar to the heat

convection coefficient H on the plate surfaces, the heat

convection coefficients H1 and H2 at the edges of the plate

remain constant.

Previous sections show that the stress intensity factors for

both crack models can be easily obtained by equations

(6 through 9) if the stress distribution, resulting from a

delta function heat source (or sink) Q6(t) at any arbitrary

location (x',y') in the uncracked plate (Figure 2-6), can be

solved.

To solve for the Green's function, the following boundary

conditions need to be included:

at x =0,

KT =-HIT (10)

aXX a xy =0 (1)

8



at x=B,

KT = H2T (12)
a =a = 0 (13)
xx xy

at y =

T= 0 (14)

axx = =a' =, 0 (15)

The temperature solution to the uncracked plate problem,

shown in Figure 2-6, can be obtained in closed form by the

standard method of separation of variables [4]. The result

is

T(x,y,t) = 7 (Zn(x) Zn(x')
2pc6-v,t n n n

exp[ 2 2n4ft ] ) (6

where

tan a B = 2 1H(17)t n n= K2a2 _ HIH2

n 1 2

Zn (x) = (Kn cosanx + H1 sinanX) Yn (18)

2(K 2+H 2n
Y 2 n 2 (19)n (K 2a2+H2) [B(K2an+H 2 )+KH2 ]+KH (K2 a2+H)

9
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The next step is to solve for the stress distribution due to

the temperature field equation (16). References [5,6] show

that one particular solution to the thermal stress problem

can be expressed in terms of a stress function as follows

U. = . (20)
1

a -2G (21)

a -2G ( (22)
yy ,xx

a 2G (0 (23)
xy D'xy

4(x,y,t) = a(l+u) e-n 2tft en2 T T(XyT)dT + (24)
0

where is a stress function, and 4o is a function of x, y,

and t such that would remain finite as t approaches

infinity. Substitution of equation (16) into equation (24)

yields

= e-E2t n (25)

where

n -a(l+v)Q z (x) Z (x)(e-a n(Y-Y')erfc((l +
n 4pcD Zn n

a(y-y')
e n erfc(o 2)] (26)

10



(a 2 t) I1/ 2 +(Y-Y')27
= 2 (27)

1,2 n)4lt

and erfc(x) is a complementary error function.

In general, the particular solution 4 shown in equations (25

through 27) does not satisfy the stress free boundary,

equations (11 and 13), at x=O and x=B. A complementary

solution *, which is an analytic function, must be included

to make the two edges x=O and x=B stress free. The stresses

are then calculated by

x = 2G (*-4) (28)
xx ,yy

*ya = 2G (4-4) (29)
*yy ,xx

and

a xy= -2G (*-4)xy (30)

where * is the solution of

v2 = 0 (32)

4, = , at x=O and x=B (33)
,yy ,yy

and

4, =4 ,  at x=O and x=B (34)
,xy xy



Solution to equations (32 through 34) can be obtained by the

methods described in [7) for the problem of an infinite

strip of plate subjected to arbitrary tractions at both
edges (as illustrated in Figure 2-7), and is summarized in

Appendix B.

Therefore, at the cross section of y=O, the stresses caused

by a Delta function heat source Q6(t) at (x',y') are

A

a = a + I (P cosanx + Qnsina x) (35)
yy yy n nn n

axy= axy + (Rcosa x + Snsina nX) (36)

A A

where ayy and axy are stresses due to the complementary

stress function * and are listed in Appendix B,

P Ga(l+v)Q Y Ka2M Z (X,) (37)n 2pcD nn n

Q Ga(l+v)Q Y H an M Z (X,) (38)n 2pcD n ln

Rn = Ga(l+u)Q YnH N Zn(x,) (39)2PcD n 1 n

S Ga(l+u)Q Y Ka N Z (X,) (40)
n 2pcD n n n

M = - [exp(any')erfc(j2) +exp(-any') erfc(w 1)] (41)

2
exp(-w 2)

N =-(exp(a ny) (anerfc( 2 ) +

2

-exp(-a ny') [a n erfc@. 1 ) + ex(w)(42)

12
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The Green's functions for the stress intensity factors can,

thereby, be calculated by substituting equations (35 and 36)

into equations (6 and 7), and the total stress intensity

factors can be obtained by summing up equation (9) for all

heat sources or sinks in the plate.

Verification of the above methodology is provided in Section

3.3, and its application to two sample problems is

illustrated in Section 4.0.

13
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Figure 2-1. Influence Function Concept for Calculating

Stress Intensity Factor
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QG (t)

Q(t)

Q(T-)

(-0

Figure 2-3. Concept of Green's Function Integration in
Time Domain
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Figure 2-5. Center Cracked Plate Configuration
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I Figure 2-7. Infinite Plate Strip Subjected to Edge Loads
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3.0 PHASE I DEMONSTRATION SOFTWARE (AF-CRACK)

3.1 General Program Features

The theoretical solution technique described in Section 2.0

has been implemented in the form of a demonstration software

package called AF-CRACK. Although preliminary in nature,

this software package incorporates an interactive,

menu-driven format, which permits its use without extensive

skills on the computer or operating system, and without

constant reference to a user's manual. Also, because it is

modularized, a user can stop at any point during a problem

application and come back later to finish the calculation at

any time.

The program runs on an IBM PC-XT or -AT (or compatible) with

minimum of 640K memory. A math co-processor card is also

recommended (although not mandatory) to enhance program

execution speed. All of the AF-CRACK input and output are

unit-transparent. The user can use any set of units he or

she wishes as long as all the data are consistently in the

same unit system. The following sections describe the

structure and execution of the AF-CRACK program, as well as

verification problems run to compare the results to other

solution techniques.

3.2 Software Architecture
'

The basic structure of the AF-CRACK computer program is

illustrated in Figure 3-1. The program consists of six

independent modules and one data base shared by all the

modules. A "software bus" concept, developed independently

by Structural Integrity Associates [8], was used to link the

program modules and the data base. The software bus allows

21
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users to enter, execute and exit each program module with a

single key stroke, as well as to execute other, independent

software, which can be set up to interface with the same

data base. (Some customization of data files is required,

however, in order for AF-CRACK to automatically transfer

data with other independent software packages on the bus.)

As illustrated in Figure 3-1, AF-CRACK currently contains

six modules: Geometry Input, Material Input, Heat Source

Data Input, K Calculation, pc-CRACK, and Review. The last

two modules, pc-CRACK and Review actually incorporate two

pre-existing software packages which are useful in pre- or

post-processing the AF-CRACK results. The Review module

loads up the popular LOTUS-123 spreadsheet and graphics

software, which is used to generate tabular input to some

program modules, and to create tables and graphical displays

of the results. Translation routines are included which

automatically link AF-CRACK input and output files with

LOTUS-123.

PC-CRACK refers to another menu-driven fracture mechanics

program developed independently by Structural Integrity

Associates [9], which possesses a wide variety of crack

growth, critical flaw size and elastic plastic fracture

machanics capabilities. The long term objective is to be

able to directly feed the stress intensity factor results

from AF-CRACK into PC-CRACK (or some other similar program

of Air Force's choice) for further analyses, such as fatigue

crack propagation, critical crack size, and corrosion crack

growth. However, at the present stage, the data base

generated by AF-CRACK is not compatible with the input

format of PC-CRACK. Full communication between AF-CRACK and

PC-CRACK can be achieved later if Phase II of this project

is pursued.

22
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Copies of these two independent software packages, along

with user's manuals are included with this report, as part

of the Phase I deliverable. A detailed description of the

other AF-CRACK program modules and the data base is given in

the following sections.

3.2.1 Geometry Input Module

As shown in the menu for this module illustrated in Figure

3-2, this module has two steps: select crack model and input

plate dimensions. In the first step, users are asked to

choose between a single edge cracked plate and a center

cracked plate. More crack models, such as crack emananting

from a hole, semi-elliptical surface crack in a half space,

and quater-circular surface crack in a quarter space, can be

included in Phase II of this project. Once the crack model

is chosen, the user can execute the second step of inputting
geometric dimensional data. For the two crack models

currently implemented, only plate width B and thickness D

are needed. The format for input of the data is self-

explanatory.

3.2.2 Material Input

As illustrated in Figure 3-3, this module consists of three

major steps: input heat convection constants, H, HI, and H2,

input heat conduction constants, K, p, and c, and input

elastic constants, E, v, and a. Once again, the input

format is self explanatory.

3.2.3 Heat Source Data

As shown in the menu in Figure 3-4, there are three steps in

this module. The first step asks the user to input number

of heat sources (or sinks), number of eigen values to be
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included, time increment At to be used in the computer

simulation, and total time for the analysis. The maximum

number of eigen values that can be used is currently set to

20. A higher number of eigen value terms will result in

longer computer execution in the Green's function

calculation. It is recommended that users perform a simple

convergence study to get an optimal number of eigen values.

The program will choose an optimal At for numerical

computation based on the material constants and geometrical

dimensions of the problem. The optimal time increment At is

set at 1/30 of the decay period td for the problem. In this

preliminary version of AF-CRACK, the total time has to be

less than 250(At).

The next step in this module is to input heat source

locations (x',y') as well as the starting and ending time

for each heat source or sink. When the second step is

chosen in this module, the user only needs to input numbers

in appropriate cells in the LOTUS-123 spread sheet, which is

loaded automatically. Upon leaving this spread sheet, the

input data are saved in a text file for later use.

The third step in this module is to input heat source

intensity versus time for each heat source. Again, a

LOTUS-123 spread sheet will appear on screen and the user

only needs to input numbers in the cells. Note that, in

this spread sheet, the time t which appears in the first

column is the time relative to the starting time specified

in the last step. In other words, if a heat source Q(t)

does not start to generate heat until tot the user can input

the starting time as to in the last step and input Q(t-t0 )

in this step. In this spread sheet, the time increment has

been set automatically to be the optimal At calculated in

the first step and the user should not attemp to change it.

In the current demonstration version of AF-CRACK, only a
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total of 250 steps is allowed for each heat source.

Finally, we must mention that the heat source intensity

should be positive for heat sources and negative for heat

sinks.

3.2.4 Calculate K

Stress distribution and stress intensity due to specified

heat sources are calculated in this module. As illustrated

in Figure 3-5, there are four steps in this module.

The first step is to input crack length for the selected

crack model. The second step is to calculate Green's

functions for all the heat sources. The third is to modify

heat source intensity versus time sources if the user

desires. (This step can be skipped if the user has already

defined heat source intensity versus time curves and does

not want to modify them.) The last step is to calculate

stress intensity factors for the selected crack model under

the specified heat sources. Two sets of stress intensity

factors are calculated for center cracked plates, one set

for each crack tip. Only one set of stress intensity

factors is needed for single edge cracked plates.

3.2.5 Data Base

The input and output of all the above modules are saved in

several data files. There are two types of data files used

in the program: text files and binary files. The text files

are tagged with ".PRN" as their extension and the bipary

files are tagged with ".DAT" as their extension. For

example, "GEOM.PRN" is a text file saved after the geometry

input module is executed and "HEAT.DAT" is a binary file

saved after the heat source data input module is executed.
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3.2.6 Review

This module is used to display the input and output data,

either in tabular or graphics format, on the screen. Hard

copies of the displays can also be obtained. The

commercially available LOTUS-123 spreadsheet/graphics

software package is used throughout this module, adding a

wide range of input/output options to AF-CRACK. LOTUS-123

compatible files are automatically generated of all key

AF-CRACK data, which can then be plotted, printed, or

otherwise manipulated, using LOTUS-123's broad range of

capabilities.

To facilitate program use by those who are unfamilar with

LOTUS-123, extensive use of "Macro" commands has been

included in all the spread sheets. Thus the user simply

presses one or two keys as instructed on screen to see a

specific plot of his or her results. This review module

(Figure 3-6) puts all the data in five different spread

sheets, which are called from the Review module menu. The

first option obtains a spreadsheet of stress intensity

versus time results; the second spread sheet contains

Green's functions for each heat source. The third

spreadsheet is used to plot stress distribution in the

uncracked plate at the cross section of crack, and the

fourth is used to show heat source intensity versus time

curves. The last spreadsheet provides a display of general

problem information, such as crack model, crack length,

material constants, etc., in the analysis.

3.3 Program Verification

A preliminary verification has been performed for AF-CRACK

by comparing the AF-CRACK results with finite element and

pc-CRACK [9] solutions.
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The verification problem analyzed is a single edge cracked

plate, as shown in Figure 2-4, with the following input:

B = 10 inches, D = 1 inch, a = 2 inches

H =H = H2 = 0

K = 0.0002579 Btu/(sec-F-in)

p = 0.09734 lb/in , c = 2.178 Btu/(lb-F)

6X-6 E = 1xlO6 psi, v = 0.3, a = 12.73x10 in/in/F

Q(t) = H(t) Btu at x' = 5 inches, y' = 0 inch,

Eigen values included = 20

where H(t) is a Heaviside step function. This verification

problem represents a 10 inch wide thin aluminum plate with a

2-inch long edge crack, under a unit step heat source

applied at the center of the plate, right in front of the

crack tip.

Stress and stress intensity factor KI for the verification

problem, calculated by AF-CRACK, are depicted in Figures 3-7

and 3-8 respectively.

For the same problem, a finite element program, FEM2D [10]
was used to predict the steady state temperature as well as

thermal stress distributions for the uncracked plate. The

finite element mesh used is shown in Figure 3-9, and the

resulting stress distributions are also plotted in Figure

3-7 along with the AF-CRACK results. Due to the symmetry

conditions at y=O, only half of the plate was modeled in
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Figure 3-9. A total of 88 eight-node isoparametric elements

and 303 nodal points were used in the finite element model.

Figure 3-7 shows that the stresses predicted by AF-CRACK are

very close to that calculated by finite element. The stress

distribution obtained from the finite element analysis was

then input into pc-CRACK [9] to calculate the stress

intensity factors. The steady-state stress intensity factor

predicted by pc-CRACK is shown in Figure 3-8 in conjunction

with the AF-CRACK solutions. Again, very good agreement

between the two solutions is observed.

Another steady-state stress intensity factor solution has

also been obtained by actually modeling the crack in the

finite element analysis and calculating the energy release

rate by a path-independent line integral, J1. Details of J!

and its related path-independent line integrals are

discussed in Appendix C of this report. The finite element
mesh used in the J' calculation is the same as that

illustrated in Figure 3-9 except that part of the symmetry

line in the model was set to stress free to reflect the

existence of the crack. The energy release rate J = J is

then used to calculate the stress intensity factor with the

relation between J and K:

K = JE

where E is the Young's modulus of the material. Stress

intensity factor predicted by the line integral J! is also

plotted in Figure 3-8 which illustrates that the steady-

state stress intensity factors predicted by AF-CRACK and the

other two independent methods are within 1% of each other.

2
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More verification problems are needed to fully test the

program in the next phase of the project. Numerically, it

is necessary to run more finite element analyses, both

steady -tate and transient, for more crack geometries and

sizes. It would also be desirable to verify the program

experimentally, by conducting some tests to measure the

stress and stress intensity factors in plates or other

structures under rapid thermal pulses. Verification by

testing will also be proposed as part of the Phase II

effort.

Nonetheless, based on the preliminary verification performed

here, we conclude that the AF-CRACK methodology is capable

of predicting stress intensity factors for structures under

rapid thermal pulses, accurately, and with only a small

fraction of the computer time and manpower required by the

* conventional finite element analyses. Full development of

the AF-CRACK program will thus greatly enhance the

capability of the Air Force for predicting stress intensity

factors and performing subsequent fracture mechanics

analyses.
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Geometry Input

Crack Model
B, D

Material Input

H, Hl, H,

K, p, C S - Data Base
E, v. a 0

F
T
w

Heat Source Data A
R

(x.' , y.') E

General Data B
U
S

Calculate K

a
Green's Function
Modify Q.(t)

Total K(

pc-CRACK

Review

K(t)
Green's Function

Stresses
Q. (t)

General Data

Figure 3-1. AF-CRACK Software Architecture

30

*~~~~ % . .5...



INPUT GEOMETRIC DATA (GEON) Cursor Controls
NODULE MENU ___.

+ Curz'ent Line-
t Moves Up

USER OPTIONS: 4 Moves Down
S4-J Selects Option

+ 1- CHOOSE CRACX MODEL Fx Selects Option x
2- INPUT GEOMETRIC DIMENSIONS
3- TERNINATION x)18 Use Shift

+ function Keg(F11: Shift+F1)

'

Figure 3-2. Geometry Input Module Menu
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INPUT MATERIAL CONSTANTS (NATL) Cursor Controls %
NODULE MENU

+ Current Line
t Moves Up

USER OPTIONS: 4 Moves Don
4-' Selects Option

+ 1- INPUT HEAT CONUECTION COEFFICIENTS Fx Selects Option x
2- INPUT HEAT TRANSFER CONSTANTS X, RHO C
3- INPUT ELASTIC CONSTANTS, E. NU, ALPHA x18 Use Shift
4- TERNINATION + Function He-

(F11: Shift+F1)

F igure 3- 3. Maer ial Inpu t Module Menu ,

32

.#



INPUT HEAT SOURCE DATA (HEAT) Cursor Controls
NODULE MENU .:

__+ Current Line
t Moves Up Do

USER OPTIONS: 4 Moves Down
4 1 Selects Option

+ 1- INPUT GENERAL INFORMATION Fx Selects Option x
2- INPUT SOURCE LOCATION AND ON-OFF TINE
3- INPUT HEAT SOURCE INTENSITY US TINE x)18 Use Shift
4- TERMINATION + Function He?

(FI: Shift+F?)

1.

'

Figure 3-4. Heat Source Data Input Module Menu
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CALCULATE X BY GREEK"S FUNCTION (GREN) Cursor Controls
NODULE MEU

+ Current Line
t Moves Up

USER OPTIONS: 4 Moves Down
4j Selects Option

+ 1- INPUT CRACH LENGTH Fx Selects Option x
2- CALCULATE GREEK"S FUNCTIONS
3- INPUT OR MODIFY Q US TIME CURVES x>19 Use Shift
4- CALCULATE X + Function Xle
5- TERNINATE (Fl: Shift+F1)

1%

Figure 3-5. K-Calculation Module Menu
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1

REVIEN RESULTS (REUN) Cursor Controls
MODULE MENU + Cuvvent Line

t Mloves Up
USER OPTIONS: 

t oves on
-' Selects Option

+ 1- PLOT X ERSUS TINE 
Fx Selects Option x

2- PLOT GREEN'S FUNCTIONS

3- PLOT STRESS DISTRIBUTION AT 9: x)l8 Use Shif't
4- PLOT Q UERSUS TINE + Function Beg
5- REUIEH INPUT DATA (Fl1: Shift+FI)
6- TERMINATION_

Figure 3-6. Review Module Menu
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COMPARISON OF STRESS RESULTS
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-100-- - - - - - - - - --
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x (IN)
AF-CRCK 0 FEW

Figure 3-7. Verification Problem Comparison of Steady-

State Stress Distribution at y =0
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STRESS INTENSITY FACTORS
VE1CATInm PROOLB
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Figure 3-8. Comparison of Stress Intensity Factors for

Verification Problem
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Figure 3-9. Finite Element Mesh for Verification Problem
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4.0 SAMPLE PROBLEMS

Two sample problems are presented in this section to

illustrate the use of the AF-CRACK program. Except for

crack model, crack size, heat transfer coefficient and heat

source specification, all other parameters for the two

sample problems are the same, and are as follows:

B = 10 inches, D = 0.2 inch

K = 0.0002579 Btu/(sec-F-in)

3

p = 0.09734 lb/in , c = 2.178 Btu/(lb-F)

E = 10xl06 psi, v = 0.3, a = 12.73x10 - 6 in/in/F

Eigen values included = 50

The above material properties are representative of

aluminium.

4.1 Sample Problem 1 - Single Edge Cracked Plate

As shown in Figure 4-1, this sample problem considers a

continuous surface crack, 2 inches deep, at the left edge of

the above plate. The heat convection coefficients used in

this problem are

2
=H 1 = H = 0.0001929 Btu/(sec-F-in

and the four heat sources are at (x,y) coordinates of
(10,4), (10,2), (10,-2), and (10,-4) with
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Q1 Q2 = Q3 = Q4 =H(t-150) -H(t-1200) Btu

where H(t) is a Heaviside step function. As can be seen in

4

Figure 4-1, this simulates a line heat loading at the right '

,I

edge of the plate, which steps on at 150 seconds, and of f
again at 1200 secondst

Resulting stress distributions for the uncracked plate are

illustrated in Figure 4-2, at various times during the

loading. The stress pattern consists of compression near

the heat sources, and tension near the edge crack. This

shape remains constant as the stress builds up to its

maximum value, following application of the load, and then

subsides as the load is removed. The resulting stress

intensity factors versus time are illustrated in Figure 4-3.

From this figure, we can see that the mode I stress

intensity factor, KI, begins to rise at the time of load

application (150 seconds), levels out at a maximum value at

about 600 seconds, and then decays to zero again after the .,

load is removed at 1200 seconds. As expected due to problem

symmetry, the mode II stress intensity factor is shown as

zero throughout the problem; however, this was not

calculated by the program since the single edge crack plate

model does not yet incorporate the mode II influence

functions. Green's functions showing the stress intensity

factor response to a unit spike loading at each of the heat

sources are illustrated in Figure 4-4.
.5

4.2 Sample Problem 2 - Center Cracked Plate

As illustrated in Figure 4-5, a center cracked plate with

non-symmetric heat sources was analyzed as the second sample -

problem. The crack length in this problem is again assumed



to be 2 inches. Heat convection coefficients used are

H1 = H2 = 0, H = 0.0001929 Btu/(sec-F-in
2)

and heat sources are applied at (2.5,2) and (7.5,-2) with

Q= Q= H(t-150) - H(t-1200) Btu

As can be seen in Figure 4-5, this corresponds to loading

points just above and below the crack plane, on alternating

sides of the crack, and subject to the same transient load

history defined above in sample problem 1.

Results of this sample problem are shown in Figures 4-6

through 4-8. Because of the non-symmetry, both normal and

shear stresses develop at the crack plane, as illustrated in

Figures 4-6A and B. The stress intensity factor shown in

Figure 4-7, builds up and decays as before, but in this case

both KI and KII are non-zero and are calculated directly by

the program. Figure 4-8 shows the Green's functions at each

crack tip (left and right) which result from the unit spike

loading at heat source Q1 "
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Figure 4-1. Sample Problem I
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STRESS DISTRIBUTION AT g=

-10

--- --- -20- -- -- 1-
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Figure 4-2. Stress Distribution at y =0 for Sample

Problem 1 (c 0)
xy
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Figure 4-3. Stress Intensity Factors for Sample Problem 1
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GREEN'S FUNCTIONS
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Figure 4-4. Green's Functions for Sample Problem 1

(Mode I only, Mode II = 0)
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Figure 4-5. Sample Problem 2
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Figure 4-6A. Stress Distribution for Sample Problem 2 (a'=
yy
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Figure 4-6B. Stress Distributions for Sample Problem 2 (auy
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Figure 4-7. Stress Intensity Factors for Sample Problem 2

(the same curves for both crack tips)

49i



I
Jh

GREEN'S FUNCTIONS FOR Q1 AT (7.5,-2)
SAMPLE PRO8LE! 2

150- %U* 'U
140-

130-

120- p

110-

100

* 906 .

801

0 70-
(.

60

50

40

30

20

10
0 7

0 100 200 300 400

.. ,MGM')] +K2(ItGK 11E (SEC) law

Figure 4-8. Green's Functions Due to QI for Sample Problem 2
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5.0 CONCLUSIONS AND RECOMMENDATIONS

The Green's function concept derived in this report, coupled

with the well-known use of influence functions for

calculating stress intensity factors, is shown to provide a

powerful tool for fracture mechanics analysis of cracked

metallic structures under rapid thermal transients. Due to

the nature of the Green's function decay characteristics,

stress intensity factors for selected crack models can be

easily calculated in a few minutes on an IBM-PC or

compatible personal computer. Such a short turnaround time

makes it possible to conduct thorough parametric studies for

cracked structures subject to this type of loading, at a %

very low cost, both in terms of computer time and manpower,

as compared to other means of problem solution known to the

authors at this time. Also, using a novel software bus

concept, the resulting computer program, AF-CRACK, is able

to interface directly with the popular LOTUS-123

spreadsheet/graphics software package, which greatly

enhances the graphics capability and ease of use of the

program.

Through selected verification problems for which other

solutions are available, the AF-CRACK program is shown to

accurately predict stress and stress intensity factor, in

comparison to other techniques. This preliminary

verification, however, covered only a small portion of the

general program capabilities, and further verification is

recommended.

Based on the success of the Phase I feasibility study

reported here, we concluded that it is highly feasible to

develop a fast, accurate and easy to use general purpose

computer program based on this methodology to predict stress
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intensity factors for a wide range of metallic (or other)

structures of interest to the Air Force, under rapid thermal

pulses. It is also possible to connect the program with

other fracture mechanics computer programs, to use the

resulting stress intensity data in crack propagation or

critical flaw size predictions.

Thus we recommend pursuing a Phase II effort to complete the

program development effort begun by this study. The

following areas have been identified as candidates for

further study/development in the subsequent phases of the

project:

(1) Provide more crack models. The basic methodology can be

expanded applicable to a wide range of models, such as

cracks emanating from a hole in a plate, cracks in

cylindrical structures, and finite aspect ratio cracks (e.g.

thumbnail surface cracks).

(2) Extend the program to mixed mode crack problems. In the

preliminary version of AF-CRACK, only one of the two crack

models has both mode I and mode II solutions. To be able to

handle realistic problems, we must have the mixed mode

solutions for all the crack models.

(3) Extend the Green's function solutions to problems in

which the crack surfaces are insulated, because actual crack

surfaces are expected to behave somewhere between fully heat

conductant (as assumed here) and insulated. Conceptually,

this type of Green's function can be derived by

superimposing a continuous heat dipole along the crack

surface onto the existing Green's function

(4) Study the limitations of the quasi-static

thermoelasticity used in this study relative to planned
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applications (heating rates) of the software. The two

assumptions should be considered independently to determine

separately at what heat rates the lack of inertia terms and

the decoupling of the equations break down.

(5) If possible, and if the study of step (4) deems it to be

desirable, include inertia effects into the existing,

decoupled thermoelasticity equations for the Green's

functions.

(6) Investigate the limitations of the linear elastic

fracture mechanics theory used by the program relative to

planned applications.

(7) Perform additional verification of the program both

through additional comparisons with existing analytical

solutions and through experiments.

(8) Furnish links between AF-CRACK and other fracture

mechanics software designated by the Air Force. (eg.

pc-CRACK, CRACKS-84 & -86, CRACKGRO, ASDGRO, etc.)

(9) Conduct parametric studies, using the software, of the

effects of various heat sources and locations on stress A

intensity factors in structural configurations of interest

to the Air Force. In addition to providing useful technical

results, this will also provide feedback to the program

developers on user friendliness, speed and convenience of

the program in a typical application.

I
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APPENDIX A - INFLUENCE FUNCTIONS

A.1 Single Edge Cracked Plates

For a single edge crack in an infinite strip of plate, as

illustrated in Figure 2-4, the influence function (or weight

function) for mode I cracking has been provided by Bueckner

[2]

as

a-x a-x2[i(x+ pl(1-+ - ) + p 2 (--) ] (Al)

where

P1 = 0.6147 + 17.1844 R2 + 8.8722 R 6  (A2)

P 3 = 0.2502 + 3.2889 R + 70.0444 R6  (A3)

R = a/B (A4)

and x, a, and B are defined in Figure 2-4.

Bueckner (2] has stated that the above equations for the

weight function m (x) are very accurate for cracks up to
1

half of the plate width, B. The authors cannot find the

Al
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corresponding influence function m2 (x) for the mode II

cracks after a preliminary literature survey. However, we

felt that the solution for m2 (x) might already exist or can

be obtained numerically by finite element analyses in the

following phase of this project.

A.2 Center Cracked Plates

Influence functions for a center crack in an infinite strip

of plate, as illustrated in Figure 2-5, have been derived by

Tada, et al. [3] as follows

ml(x) = m2 (x) ( [, -1 )])(F 2 [1, 1 2)] (A5)

where

F = 1 + 0.297 (1 - 2 - cosf)A6)
(1 2

:7r

(sinln/sinFf)
F2, = tan2E (A7)

1i- (cosif/cos7 ) 2

and x, a, and B are defined in Figure 2-5. In equation (A7)

the plus sign is for the right crack tip and the minus sign

is for the left crack tip.

Tada (3] shows that equations (A6) and (A7) are accurate

within 1% for all crack sizes.

A2
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APPENDIX B - SOLUTION FOR COMPLEMENTARY STRESS FUNCTION ' P

This Appendix discusses the solution procedure for the

stress function * and its resulting stress ayy and axy in

equations (28-36).

It has been discussed by Timoshenko [7] that the solution

for the problem illustrated in Figure 2-7 can be written as

( x coshpx+C x sinhj3x)cospy dP.
fWc 1 oh + 2sih +3 40

+- (D 3COShpx+Dsinhpx+D3x coshox+D4 x sinh3x)siny d

(BI)

where x = x-(B/2). In equation (Bi), the eight constants

CI, C 2, ... , D 3, and D4 are determined by the boundary

conditions at x=O and x=B. As explained in equations (32

through 34), the boundary conditions for ' at the two edges,

x=O and x=B, are the non-zero stresses due to stress

function of equation (25). By substituting equations (25

through 27) into equations (33 and 34), the boundary

conditions for ' can be written as follows

at x=O (x= -B/2),

'yy = F (y) (B2)

B1
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x =F 2 (Y) (3

and at x=B (x=B/2),

yy F 3 (y) (B4)

,y F 4 (y) 
(5

where

F -Y a(1+u)Q I Zn (0) Zn (xI)F()4pcDn n

ex(w2 1 x(w2
exp(a (y-y')) [anerfc w, + 2x(~) G 1 x(~

n n

exp(-w 2  Wi exp(-w 2)

+exp(-a n(y-y')) [anerfc(c 2) + 2 2 2 2

(B6)

F 2 (y) = 4pcDv)

exp(a n(y-y')) rerfc((j + p-( 1)
n~v L\ 1  

-frt a ]

B22



22
exp(-- 2) W exp(- 2

+ exp(-a (y-y')) (aerfc(w 2 ) + 2 1 1)
W ft V'f-rraf t

(B8)

F4 (Y) = a(l+v)Q Zn(S) Zn(x,)(
4pcD l f

exp(a=n(Y-y')) [-rfc(ul) - ex(-t

n

22

exerfc 2) W exp(-(-w)2)_

- exp(-a n(y-y')) [erfc( 2 ) + (B9)

-ft a f

n

After solving the eight constants, CI, C2 , ... , D3 , andD4

the stresses at y=O, can be expressed in a double

integration as follows

A^ 2G F ([ 2(R 1 coshfx + R 2 sinh 13x + R x coshfx

+ R4 x sinh(x) Fl(y) + [2(-R coshfx + Rsinh jx

+ R3 x coshfx- R4 x sinhlx) F3 (Y)] ) cosfy dj3 dy

exr n(-y) [-rfc 1 ) - - -

2[G(V 1 coshlx + V2 sinh f x + V x coshlx

ir-- -F 2 3

+ V4x sinhx) [F 2 (y)+F 4 (y) ) sinij(y d2 dy (BI0)

B3
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A 2G ~ 3 ~ oh3
a Iy I (Vi P sinhf~x + V2Pcosh Px+V3 cso

+ o3x sinh3x) + v4(ip xcs~)

[F3 (y)+F 4 (y)] p 1 sin13y d13 dy

JG (R11 sinh13x + R213 cosh P

+ R3(oh + Pix sinh3x)R3 c+h3 R 4 (sih13x + 13x cosh13x)]F 1 (y)l

+[-R 1 0 sinh13x + R 2 P cosh 13x + R 3 (cosh3x + O3x sinh3x)

-R (sihp+3 x cosh13x)]F (y) P iydpy (Bl

where

R 1 ; [sinh(~~ + (-)cosh(-)]/(13B + sirih1B) (B12)
1T2 2 2

R= )3 + ,1 3B\.nh,1 3 B\,,,B -sinh13B) (B13)2 )3 [2 2h2 2

3 1-- cosh(LB-)]/(13B -sinh13B) B4

R4  1[h sinh(P-)]/(3B + sinh13B) (B15)
4= 2

B ~ sirih( -) ]/(13B + sinh13B) (B16)

B4



V2= [- cosh( )]/(13B - sinhOB) (B17)

- [1 sinh(2B)]/(PB - sinh3B) (B18)V3= -0 -2sn (I)i

V4 = [--- cosh( -)]/(P3B + sinhPB) (B19)

In numerical calculation, the integration in equations (B10)

and (BI) can be evaluated by using the Gauss-Laguerre

quadrature and Gauss-Hermite quadrature [11]. In AF-CRACK,

six points were used for the Gauss-Laguerre quadrature, and

five points are used for the Gauss-Hermite quadrature. That I

is, the integration can be carried out approximately by

CO"

F(z) dz = W W. exp(z) (B20)JO i

where

Z, 0.222846604179 , W1 = 0.458964673950

2= 1.188932101673 , 2 = 0.417000830772

= 2.992736326059 , W= 0.11337338207433

-1
z 5.775143569105 W = 0.103991974531x10

-3
z = 9.837467418383 W 5 = 0.261017202815x10

z= 15.982873980602 W 6 = 0.898547906430x10
- 6

B5



and by

r 
2o

F(z) dz = 2 W. F(z.) exp(z 2  (B21)

Zl,5 = 1- 2.0201828705 W1,5 = 0.0199532421

z 2,4 = ± 0.9585724646 W2  = 0.3936193232

,4 
2,4

Z3 =0.0 ' W = 0.9453087205

B6
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APPENDIX C - PATH INDEPENDENT LINE INTEGRALS

FOR STEADY-STATE, TWO-DIMENSIONAL THERMOELASTICITY

ABSTRACT

Three path-independent line integrals J , M', and L3' are derived

for the steady-state, two-dimensional thermoelasticity. These

integrals are similar to the JK' M, and L3 presented by Knowles

and Sternberg [1], but include additional terms of either free
.

expansion displacement vector uk or temperature 9 and its complex

conjugate Q in their formulation. These new line integrals

enable us to avoid the undesirable area integration [2] when

calculating the strain energy release rate for crack problems.

Application of V, M', and L' is demonstrated througth a samplek3
problem of a constant heat flux disturbed by a finite crack in an

infinite plate.

1.0 INTRODUCTION

Since the discovery of the conservation integrals J k' M, and L by

Knowles and Sternberg [1], several similar conservation integrals

have been introduced for the thermoelasticity. Gurtin [3] has

proposed a line integral which consists of, in addition to the

well-known J -integral, three more terms related to the
1

temperature field. Unfortunately, path-independence of the line

integral proposed by Gurtin relies on several restrictions which

in general can not be met, e.g., one of the restrictions is that

the temperature distribution has to be symmetric about the crack

axis and equal to zero on the crack surfaces. Aoki, et al. [2]

have derived another set of path independent integrals JR' M, L,

and I for general elastic-plastic problems. As a special case

for the two-dimensional thermoelasticity, these integrals become

C1
,m.

. . . • "W i* - - '. % ,-: -j '.'.' .-, , ''. 'J,/w/ ',. .



I~~i ~t~iLW~ W WW VW Ml V-P ENUN fX

Ap
A J(Wnk-Tjuj,k)ds - a mj mj dA (C)

A r
M f (Wn jTkuk, )x j ds - A jk6jkal(0,mX +) dA (C2)

L = f ej 3 k((Wnj-Tmumj)xk + Tjuk)ds

- JA j3k1 km jm8 pq pq ,jXk)dA (C3)

where j, k, m, p, and q = 1 or 2, W is strain energy density, a

is equivalent coefficient of thermal expansion defined in (C14),

6 is temperature distribution, F is a intergration contour

enclosing the crack tip, A is the area bounded by F, and e ijk is

an alternate tensor. Although the above three integrals are

path-independent, addition of the extra area integration at the

end of (Cl), (C2), and (C3) have ruined one of the merits of the

path-independent integrals. For isothermal elastostatic

problems, the three line integrals, Jk' M, and L introduced by

Knowles and Sternberg [1] allow us to take advantage of its

path-independence and calculate the energy release rate based on

solutions far away from the singular crack tip. However, when

calculating the energy release rate by (Cl), (C2), or (C3), a

highly accurate stress and temperature solution near the crack

tip is necessary in order to evaluate the area integration

accurately, implying higher computer cost and potential arguments

on how accurate is enough for the solution near the crack tip.

For the steady-state, two-dimensional thermoelasticity, the

present study eliminates the need of area integrations by

introducing three path-independent line integrals J , M', and L'.

C2



2.0 FORMULATION

2.1 Governing Equations

Consider a plane strain or plane stress deformation field under a

steady state temperature distribution. It is assumed that no

body force or distributed heat source are present. Governing

equations for the steady-state, two-dimensional thermoelasticity

problem are

ojk,k = 0 in B (C4)

C =6 jkXFmm + 2 4F - 6 jk(3X+2~)a8 (C5)

6 jk = (Uj,k +uk,j)/2 (C)

a n T0  on S (C7)jknk j a

o

u =u on S (C8)

o .. =0 in B (C9),JJ

0 on ST (CI0)

0 Q on SQ (Cll)

where summation convention has been implicitly used for repeated

subscripts with j, k = 1, 2, B is the elastic body with S as its

boundary, S.1 Su, ST, and SQ are subsets of the boundary S, n is

the normal direction of S, a is coefficient of thermal expansion,

and X and i are Lame's elastic constants defined by

C3



Elul Eu

= (C12)
2 2(l+V 1 )1 

in which EI=E and ul=u for plane stress problems, and

E I=E/(l-u 2), and vl=v/(l-u) for plane strain problems (E and u 

are Young's modulus and Poisson's ratio respectively).

2.2 Conservation Laws

As a start, let us assume that the elastic body B is simply

connected. Extension of the formulation to multiply connected

bodies is discussed in 2.4. The area integrations in (Cl)

through (C3) can be converted into line integrations by

introductin a new variable 0, which is a complex conjugate

function of 0, into the formulation. 6 and 0 are thus related by

the Cauchy-Riemann equations

=0 ,and 6 =-0 (C13)
,2 ,2

Let us define another new variable uj, the free expansion

displacement , as

+ iu a (0 + iQ)dz (C14)

for plane strain problems. With (C13) and (C14), the area

integration in (Cl) can be rewritten as

T u6.a 0  dA= a u. dA = F.n u. ds (C15)
,m 1 k jm ,imk 3m m j,k

A A f

where

C4



U =u aU = -i (C16), ,2 , 2  2 , 1

Thus (Cl) becomes

J S[Wnk -T ds (C17)k

where

U! U. -- 
(C3)

or

J = {Wn - Tjuj,1 + aI(T1  + T2f)} ds (C19)

* and

J J = {Wn 2 - Tjuj,2 - al(T1 Q - T2 e)} ds (C20)

Similarly, (C2) and (C3) can be rewritten as

MI T,(Wn.-Tk j)xjds (C21)

or

MI = ((Wnj-Tk uk,j)x + aIO(TIxI+T2x2)-aIQ(TIX2-T2Xl ) ds

a(C22)~and

L3 j3k(Wn jT uj)xk +  ds (C23)

can not be expressed in terms of 0 and Q like (C19), (C20),
and (C22) because the last term in the integrand of (C23) would

C5
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result terms involving f(0+i[2)dz. Thus, for the steady-state,

two-dimensional thermoelasticity, the conservation integrals

defined in (Cl), (C2), and (C3) can be reduced to line integrals
.

with the addition of u. or e and 0 in their formulation. We see3
from (C17), (C21), and (C23) that, with u! being the parts of the]3
displacement, formulations of J, M', and L3 for the

thermoelasticity are identical to formulation of J k' M, and L3

for the isothermal elasticity. This observation is similar to

the analogy between the governing equations for the

thermoelasticity and isothermal elasticity discussed in [4].

One way to calculate J', M', or L3 is to solve for 0, in addition

to the original heat transfer/thermal stress problem, and use

(C19), (C20) or (C21). Since 0 is the complex conjugate of 0, it

satisfies the Laplace equation and can be solved in closed form

or numerically with a set of boundary conditions conjugate to

that for 0. Another words, Q is the solution of

= 0 in B (C24)

Qn =0 on ST (C25)

and

2 = -Q on SQ (C26)
'Q

where n and s are normal and tangential directions respectively

of the boundary S. Alternatively, J ', M', and L' can be

calculated by solving for the free expansion displacement u and]
substituting them into (C17), (C21), or (C23).

C6



2.3 Free Expansion Displacement u.

The free expansion displacement u. introduced in (C14) is not

only for the convenience of formulation but also physically

meaningful. Substitution of (C16) and (C6) into (C5) yields

0 jk = 6 jkX(Uj,j+uk,k) + J(Uk+Uj) (C27)

where u! is defined by (C18). By the definition of u!, it is

easy to deduce that, when uj=uj, all displacement, stress, and

strain components vanish. Therefore, u. is the stress free

displacement for the elastic body under the same temperature 0 as

the original problem. For a simply connected body, u. is the

displacement solution for the same body B under the same

temperature distribution 0 but with homogeneous mechanical

boundary conditions, i.e. T.=0 and no prescribed displacements oni

the boundary. It is worth noting that, although all the stress

components corresponding to u. in the xl- X plane are zero, the

stress component 033 associated with u. will, in general, not be
333

zero for plane strain problems.

2.4 Multiply Connected Body

Since most of the elastic bodies we deal with in fracture

problems are multiply connected, it is important to extend J.',

M', and L3 to multiply connected bodies. For an (m-i-l)-ply

coinected body, ( and u. are still the complex conjugate of 0 and

the stress free displacement field with homogeneous mechanical

boundary conditions, respectively. But, when solving for 2 and

u., m additional cuts have to be introduced to make the body

simply connected. Surfaces of these m cuts are stress free and

can move freely against each other, i.e. overlapping or sliding

C7
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of the two adjacent faces on each cut are permitted for u.
Also, 0 is continuous across the cuts with n being the normal

,n
direction of the cuts. The additional m cuts are necessary

,

because, for a multiply connected body, 0 and u. may be
J

multi-valued even though its counter part 6 is still

singled-valued [4]. In general, 0 and u. are not continuous

across the cuts, in a multiply connected body, therefore,

formulations for J r M', and L' must be modified to account for

the discontinuities when the integration contour F intersects any

of the cuts. For instance, for contour F in Figure 1, an

additional term of

T{ [uj,k] ds (C28)

C1

STj [uj,k]Xk ds (C29)

CI

and

- e 3mj (TmCuj] -Tk[uk,m]xj) ds (C30)

C1

must be added to (C17), (C21), and (C23) respectively, where [f]

is the discontinuity of f across C I. Nevertheless, it is always
possible to chose the cuts and the integration contours F in such

a way that they do not intersect each other, e.g. contour F 2 n

Figure 1. In this case, expressions in (C17) to (C23) are still

valid for multiply connected bodies and the addition of (C28),
(C29) or (C30) to the conservation integrals can be avoided.

Finally, when solving for 0 and u., selection of the m cuts to
make an (m+l)-ply connected body simply connected is not unique,

neither are the solutions for Q and u., but the final values of

C8
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J , M', and L' do not depend on the choice of the cuts or the3integration contours.

2.5 Energy Release Rates and Stress Intensity Factors

Similar to the physical intepretation of J k' M, and L3 in the

isothermal elasticity [5], J', M', and L' defined in (C17) to

(C23) can be deemed as the energy release rates associated with

translation, rotation, and self-similar expansion of the crack,

respectively. Moreover, since the order of stress singularity at

the crack tip for the two dimensional thermoelasticity is still

-1/2 [6], the relationships between energy release rates and

stress intensity factors for the isothermal plane elasticity

[5,7,8] also apply to the thermoelasticity problems, i.e.

, 2 2
J1 = (KI+KII)/EI (C31

and

M' = xlJ! (C32)

11

where E is defined in section 2.1 and xo is the x -coordinate of11 1the crack tip in a Cartesian coordinate system of which x.-axls

is along the crack surface.

3.0 EXAMPLE PROBLEM

To study the effectiveness of J, M', and L; in numerical

calculation, an example problem of a finite crack of length 2a in

an infinite plate with prescribed temperature gradient vO at

infinity is chosen. The temperature gradient v9 at infinity is

assumed to be perpendicular to the crack. Stress intensity

factor for this problem has been found [61 to be

pL

C9
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K = (2waa 4 -- a v@)/(l+K) (C33)

where j is shear modulus, a is coefficient of thermal expansion,

and K equals to (3-4v) for plane strain problems or (3-v)/(l+v)

for plane stress problems.

A finite element program with built-in J routine is used to

solve this problem. As shown in Figure C-2, a finite size

rectangular plate is used to simulate the infinite plate. Due to

the inherent symmetry of the problem, only one half of the plate

is needed in the finite element analysis. A total of 249 nodes

and 70 eight-node isoparametric elements is used. We found after

a few numerical experiments that numerical solution to this

problem is not sensitive to the size of the finite plate once the

length on each side of the finite plate is more than ten times of

*, the crack length. Also shown in Figure C-2 are five integration

' contours to calculate J1. A standard heat transfer/thermal

stress analysis is first perfDrmed for this problem followed by

another analysis for either 0 or u. so that J' can be calculated
[. at the five seclected contours based on (C17) or (C20). For this

doubly connected body, a cut along A-B in Figure C-2 is

introduced when solving for 0 and u.. Since there is no
I

intersection between the cut A-B and the five integration

contours, (C17) and (C20) can be used without modification.

Boundary conditions for the finite element analyses are

summarized in Table C-1. Once J' is calculated, the stress

intensity factor can be determined by (C31).

Resulting stress intensity factors based on two different

equations, (C17) and (C21) are listed and compared with the exact

solution (C33) in Table C-2. It is seen from this table that

stress intensity factors predicted by J' and finite element

methods are essentially path independent except for the first

contour. Larger errors at the first contour is expectable since

CIO



the finite element mesh at the crack tip is relatively coarse,

and stress distributions near the crack tip are thus not expected

to be highly accurate. However, with only 249 nodal points and

*. 70 elements in the finite element model, stress intensity factors

calculated based on J' at the other four contours are within 5%

or 3%, depending upon whether (C17) or (C21) is used, of the

exact solution given by Sih [6]. Judging by numerical accuracy

and computational cost, formulations of Jk'' M', and L in terms

of 0 and 0, (C19), (C20) and (C22), is preferable to those in

terms of u., (C17), (C21) and (C23). However, formulations of

J', M', and L3 in terms of u. still provide a good alternative

when 0 is difficult to obtain.

4.0 CONCLUSION

Conservation integrals for thermoelasticity have been found to

contain extra area integration terms which often make these

path-independent integrals less attractive compared to other

methods, such as special crack-tip elements. However, for plane
strain or plane stress problems under steady state temperature

distributions, such a undesirable area integration can be
eliminated by using one of the three path-independent line

integrals, J , M', and L', introduced in this paper. To use J'

M', or L , an auxiliary variable, u. or £2 , has to be solved in

addition to 6 and u. of the original problem. Solution to theJ

auxiliary problem of u. or £ can be obtained numerically or in

closed form without much difficulty. Physically, Q is a complex
*

conjugate of the temperature distribution 0 and u. are thr stressJ
free displacements. It has been shown in this paper through an
example problem that the energy release rates or stress intensit':

factors for cracks in a two dimensional solid under steady state

temperature can be easily calculated with J' or M' and a

relatively coarse finite element model.

Cli



5.0 REFERENCES

1. J. K. Knowles and E. Sternberg, Archieve for Rational

Mechanics Analysis 44 (1972) 187-211.

2. S. Aoki, K. Kishimoto, and M. Sakata, Journal of Applied

Mechanics 48 (1981) 825-829.

3. M. E. Gurtin, International Journal of Fracture 15 (1979)

R169-R170.

4. N. I. Muskhelishvili, "Some Basic Problems of Mathematical

Theory of Elasticity," 4th Ed., Noordoff, Groningen (1963).

5. B. Budianski, and J. R. Rice, Journal of Applied Mechanics

40 (1973) 201-203.

6. G. C. Sih, Journal of Applied Mechanics 29 (1962) 587-589.

7. L. B. Freund, International Journal of Solids and Structures

14 (1978) 241-250.

8. A. G. Hermann and G. Hermann, Journal of Applied Mechanics

48 (1981) 525-528.

C12



Table C-I

Summary of Boundary Conditions

for u. for u. for 0 for QJ J

A-B Ul=O T.=0 0 i=0 f=0

B-O-C T.=0 T.=0 =,=0 0=0
J , 2

C-D Ul=O Ul=O 0 =0

D-E T.=0 T.=0 9 =-vO Q, =0

E-F Tj=0 Tj=0 0,1=0 , l=vO

F-A Tj=0 Tj=0 0 =-vo n, =0
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Table C-2

Normalized Stress Intensity Factor (+)K 1

2pLaa 4 7va vO

with (2.11) with (2.13)

contour 1 1.133 1.184

contour 2 0.951 0.974

contour 3 0.955 0.977

contour 4 0.952 0.975

contour 5 0.952 0.970

Sih [6] 1.000 1.000
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